Clouds, photolysis and regional tropospheric ozone budgets
نویسندگان
چکیده
We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene, through decreases of OH in the lower troposphere, is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity of the ozone budget components on regional scales. Correspondence to: A. Voulgarakis ([email protected])
منابع مشابه
Modeling the observed tropospheric BrO background: Importance of multiphase chemistry and implications for ozone, OH, and mercury
Aircraft and satellite observations indicate the presence of ppt (ppt ≡ pmol/mol) levels of BrO in the free troposphere with important implications for the tropospheric budgets of ozone, OH, and mercury. We can reproduce these observations with the GEOS-Chem global tropospheric chemistry model by including a broader consideration of multiphase halogen (Br-Cl) chemistry than has been done in the...
متن کاملTropospheric O3 from photolysis of O2
[1] Photolytic dissociation of molecular oxygen (O2) at wavelengths about 205 nm produces ozone (O3) in the upper tropical troposphere. In tropospheric chemistry models that ignore this process, the O3 abundance above 14 km in the tropics (a.k.a. Tropopause Transition Layer) is underestimated by 5 to 20 ppb. Even for models including O2 photolysis, uncertainty in the O2 cross sections yields si...
متن کاملUltraviolet Radiation in the Arctic: The Impact of Potential Ozone Depletions and Cloud Effects
An atmospheric radiation model is used to study the combined effects of ozone depletions/redistributions and particulate clouds on atmospheric heating/photolysis rates and ultraviolet radiation reaching the biosphere. Four types of particulate clouds prevalent in the summertime Arctic are considered: stratospheric aerosols, tropospheric aerosols (Arctic haze), cirrus clouds, and stratus clouds....
متن کاملTropospheric Aerosol Impacts on Trace-Gas Budgets through Photolysis
Aerosols affect the global budgets of O3, OH and CH4 in part through their alteration of photolysis rates and in part through their direct chemistry interactions with gases (a.k.a. “heterogeneous chemistry”). The first effect is evaluated here with a global tropospheric chemistry transport model using recently developed global climatologies of tropospheric aerosols: a satellite-derived aerosol ...
متن کاملIntercontinental transport of ozone and its precursors in a 3-D global CTM
The coupling of chemistry with atmospheric transport processes provides a mechanism for local and regional pollution from heavily populated continental regions to influence tropospheric composition at hemispheric and global scales. In this study we use the FRSGC/UCI 3-D chemical transport model to quantify the impact of ozone precursors from anthropogenic sources in the United States, Europe an...
متن کامل